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I INTRODUTION

In this paper, P -o rk's adaptive c:esign [ 1j is appli64 to multivariable systems.
Although the methou proposed by Parks ti-s been developed in general form by !.insor
and Roy [2], unresolved quest i ons were raiseu which lead to the conclusion that the
method teas limitations, particularly if an atteript is made to apply the design to
the multivariable class of problems. inese limitations are encountered if, in
causing the plant to track a model, the adaptive signals act only at til.' plant in-
puts, rather than directly on tae plant parameters. Sinc-= it is not usually poss-
ible to alter the plant parameters iirectly, these limitations are considered to be
of practical importance.

It is shown, for the linear time-invariant system having the same number of
inputs as outputs, that a stable adaptive control system can be casigned if the
state variables fire related to the outputs as phase variables, and tite number of
outputs is no greater than the number of inputs. It is further shown that instabil-
ity can result if a certain relationship is riot preserveu between the control inputs
of the plant. If the model is noainteracting, a simplification in the design can
be achi.:vea whica uepends upon the use of a par*_itioa=d Liapunov function as used
in[3].

By Parks' method, an iiaperfectly ideutified plant is caused to track a model
with guaraate_a stability. howev=r, the effect of a dis t urbance upon the adaptive
system :ias not been previously considered. It is shown that the method in [3]
can be useu in some: cases as a modification of the Parris' resign so that asymptotic
stability can be assured in the presence of disturbance.

II FORMULATION OF IidPLIT ViODIFICATIO: ,, - SINGLE VARIABLE PLANT

It is convenient at the outset to uifferei,tiate between two methods of design
baseq on the application of Liapunov's direct method. Fo y this purpose Phillipson
has proposed using the terms input modification ana feedback synthesis[ 4]. In both
of these approaches, the technique involves the selection of an appropriate Liapunov
function, and the generation of a control law which assures that the time derivative
of this function will be negative, at least outside of some region enclosing the
system's equilibrium. oy such means it nas been shown that a plant can be caused
to track a mouel with bounded (perhaps zero) error in spite of inexact specifica-
tion of plant parameters and, in the case of input modification, a bounded distur-
bance [1,3,5,6j.

Siuce use is to be made of both these methods, the two uesign approaches
will be summarized in this and the following section. At the outset the discussion
will be limited to the single variable plant. Consider first input modification.
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As shown in Figure 1, the design will be developed in terms of a relay controller.

The moci:l and plant are represented respectively by the linear equations

Y- Amy+bMr	 (2.1)

and

z-A x + b u+d	 (2.2)-	 p -- -p	 -

for which x - L x ], y - [ yi I, bm - [ b 
ii J, b - [ b 

ii l, d - (¢ 4 ] are n vectors, r and
u are scalar inp6ts, and d is a disturbance: If ^t^e tracL-ng error is defined by
e C y - x, then the differential equation describinb motion in error space becomes

e - A e + f	 (2.3)
- m - -

wherein

f - Ax+b r - b u - d

anu
A = A - A

m	 p'

If it is assumed that coefficients of A are known to be within certain bounds,
then it follows for Aar, a ] that bound on each a 11 are also known. It is also
assumed that bounds on eaR b piare given, as well al its sign.

In order to design for stability of (2.3), it is convenient to select as a
caaaivate for a Liapunov function the quadratic form

V - e tPC,
	 (2.4)

where it is assumed that P = [ p ij ] is a real symmetric positive-definite me'rix>

The time derivative of V becomes, with the use of (2.3),

V	 -e t Qe+2e t P f
	

(2.5)

where

-Q - At P + P A(2.6)
M	 m'

Now, by a theorem of Liapunov [ 7], if A is a stability matrix, i.e., the model
is assumed to stable, then for any post ive definite symmetric: Q  there is a
positive definite symmetric P which •^,atia°ies (2.6). Hence if a Pf < U, then
t is negative definite, and (2.3) h:;s a Emible equilibrium.

;n order to see how u may be used to control the sign of e tPf, it is conven-
ient to write

etPf - -1t f,	 (2.7)

where Y - [ y 1 j, f - [ f i ]. In explicit form it is seen that
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e tPf
n

=,El Y i f 1 (2.8)

where
n

Yi - j = 1 pji ej (2.9)

ana
n

fi =
j E1	

aij
xj + bmi r + bpi u- 0 i . (2.10)

As a first attempt at controlling the sign of a tP f, we shall group terms

containing u together,	 so that (2.7)	 cecomes

n

etl'f	 =	 ( i E l 	 •;— — '^i	 p 1 ) u + g (x,	 r,	 d,	 Y).—	 —
(2.11)

Here g contains the conglomerate of terms which do not contain u. Now if the
magnitude of the term containing u is mad, large enough to override the magnitude

of g, it could be possible to cause the sign of e r _ i to be negative by making the
sign of u equal to the sign of -E y b	 aowever, the sign of the term multiply-

ing u cannot be determined for all valli!= of e if elements b	 are not known exactly.
Hence, even though the term containing u may be large enou gh°sits sign cannot be

controlled completely, due to parameter uncertainty.

Another possibility is to attempt to control the sign of each term, Yifi'
in (2.L). Accoiuin^ to (2.10) this woulc require for 1 = 1, ...,n that

Ea ij x j + bTi r	 di
lul >	 bPi

(2.12)

sgn bpiu= - sgn y 

Since u is s scalar;, the sign requirements in (2.12) can be met only if for
each f i ; 0, the sign of each associated y  has the same sign at every instant of
time. This is ruled out since the P matrix in (2.4) would then have to be semi -

definite. The conclusion is that f can L.ve but one eleL_ent which is not identi-
cally zero. Hence if P is positive definite as ass mod, the state variables it

and Y must be phase variables.* Although a semidefinite P matrix has been used
to generate a control law for input-modification systems having non-phase variable
structure [61, it will be seen that the semiaefinite form cannot be used to accom-
moda'e feedback synthesis. For this reason the positive-definite P will be assumed
throughout.

It will be shown blow that r .ase-variable form is required if feedback
synthesis is applied to the single variable plant whose parameter values cannot

* The meaning he.e is that x must be obtained by taking derivatives of the output
unless Vie plant is structured ii phase variable form, in which case the states
can be obtair^a from direct measurtments.
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oe manipulated.

III FORTLULATION OF FEEDBACK SYNTHESIS - SINGLE VARIABLE P"1T

The feedback synthesis approach to adaptive control is developed around the
same equatiins of the wodel and the plant as appear in (2.1) and (2.2), subject to
the assumption that A , b are fixed but that parameter values are aot known exactly.

Since the method by itself is not concerned with disturbance rejection, it is assumdd
for the precut that d - U. The tracking error is again defined as in (2.3), the
objective being to case the equilibrium at e = 0 to be asymptotically stable.

In the feedback synthesis approach originally formulated by Parks, the automatic
adjustment of plane para;ueters by direct manipulation was included in the design.
The development which follows is specialized in that direct manipulation is not
permitted for reasons of practical iLiportance. hence, in the following development
all adaptive signals must be applied to the plant througr the control variable, u.
It will be seen that, for each plant parameter which has a value different from that
of a corresponding parameter in the model, an adaptive signal is generated so as

ultimately to cause the plant to follow the model with zero error. This is
accomplished by intronucinG as a candidate for a Liapunov function, the expression

tn+l	
2 -1

V	 e Pe + E	 ^j a.	 (3.1)

j=1

where each term, ¢	 - 1 , represents a scalar function to be defined appropriately
so that V is positive definite if P is positive definite.* Tne time derivative of

V now becomes

	

n+l	 ¢ ¢ .
V = -et Q e + 2 e t Pf +2 E —	 (3.2)

	j=1	 j

wherein f and Q are defined as in (2.3) and (2.6) respectively.

The design approach is to define each ¢, so that
J

n+l ¢ ¢.
e tPf + E —— = 0.	 (3.3)

j =l	 ^j

It follows that V will then be negative definite if Q is chosen to be negative
definite as before, and V is a Liapunov function if P is a solution. to (2.6), with
Am defined as a stability matrix.

To find ¢., attention is directed to a term Y i f i in (2.8), rewritten here for
convenience (with d

i
 = 0),
 -

n

	

Y i f i = Y i I^E l a, j xj + bmi r + bpi u]	 (3.4)

* n+l terms are required so that an adaptive signal can be generated from each

state variable in x ana the input r. Each 
X  

is a positive constant.
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If u is expressed in terms of n + 1 components,

n+1

'u =	 E	 u,,	 (3.5)

J-1 J

then (3.4) can be rewritten in the form

n

Y i f i = F.	 Y i (aij xj + bpi uj)

j=1

+ Y  ( bmi r + bpi uil
+1)	

(3.6)

Jow let the components of u in (3.5) be defined as

u  = k  xj , j=1 ... n,

and
ur+1 - k  r, with k.

J+1	 11

Then (3.6) takes the form

n

Yjfi	 j4 Yi (aij + bpi kj ) xj

(3.7)

+ Y  (bmi + bpi k r ) r.

If	 ^^ is defined according to

^j =
(ai,j

+ bpi	 kj ),	 j=11	 ...,	 n,

(3.8)

On+1	 bmi + bpi kr'

where the terms kj , k
r 

e~e permitted to be time dependent, then time derivatives of
(3.8) become 

mi	 bpi kj , J =1 , ...,n,	 (3.9)

$n+1 - bpi

If (3.7) and (3.9) are substituted into (3.3), and for the moment f is assumed

to have only one component, f n , which is not identically zero, then (3.3) becomes
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n
E= 

I 
y 
n 

(anj + upn k 
j ) x  + Yi. 

(umn + bpn k r ) r

n

kj	 Xjl
(3.10)+	 E	 (anj + bpn

j 91

k )
	bpr,n

+ (b	 + b	 k )	 b	 k -1	 0.a
mn	 pn r	 pr,	 r n+1

It is	 readily seen that (3.10)	 can be satisfied if

kj = - b
	

Xj Yn , .J =1 ,	 ..., n
pt,

and (3.11)

Xn+1
k = -	 b	 r Yn.

pn

An	 embodiment of these equations in an adaptive ccntrol system is shown in Figure

2 where the notation is adopted that

k  = C k11,	 j = 1, . . . , n

0h
2

0	 .h
n

where

hj	 -	 b 	 jal, ..., n,
pn

and for j=n+1

Xn±1

hj+1 = hr - - bpn

Although the term h is not known exactly, its sign must be known. Then the
magnitude of each h jpncan be specified arbitrarily, since each X  can have anydesired positiv. constant value.

Since asymptolic stability is assured relative to e, it follows that the gains
will ultimately attain values which cause the dynamics from r to x to be idential
to that from r to y.

Finally the assertion is made that it isin fact necessary to assume that all
but one cowponent of f is identically zero. If there were a second term in f

7
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other • tnau zero say f q , for which, bps ^ 0, then accordian to (3.4) there
would be a need to generate d so as to nuliffy the term y f as well. But

)c.i y if P is positive definite. Hcnce the scalar u caano2 be generated to serve
bbth purposes. Clearly the terms in y f cannot be cancelled if b

y
 = 0.

lThe conclusion is reached that a single variable p ant must be in hp ast variable

form in oraer that ftciback synthesis can be applied through the action of tli^
(scalar) control variable.

To remove this restriction requires that P be semidefinite as in[ a]. In
this case the gains in the adaptive loops would acquire a set of values which
would restrict e to motion on a hyperplane; however, there would be no guarantee
that e would eventually reach the origins as is desired.

IV FEEDBACK SYNTHESIS APPLILD TO fIULTIVARIABLE SYSTE:iS

In this section the more genera] problem is considered in which the model
and plant equations have the respective forms

Y= a y+ B r
M	 °	 (4.1)

_ CmY

and

x= A x+ B uP — p —
(4.2)

C x
p —

where L,, ti are vectors representing the model and plant outputs respectively.

The newly—introduces matrices are B = [ b j ]	 , B = [ b	 J	 G	 J
M	 mi n,p	 p	 bij n,p	 p	 pij m,n'

CM = [ cmij Im,n , r - [ f i J p'l , u - [ u i J p,l , w - [w i Jm,l , z _ E z, jm,1. Subscripts

outside the brackets signify matrix dimensions.

The tracking error is again defined as e o Y - x, so that

E	 - A e + f	 (4.3)
m —

f	 ti x+ d r- b u	 (4.4)
M — p —

	

A - n -A	 (4.5)
M	 p

with

a--.d
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For this case (3.1) must be generalized so that the candidate for a Liapunov
functicn is now

t	 p	 I - 2	 -1
V = e Pe + E	 E	

ij Xij	 (4.6)
i=1 j=1

where a set of Q's has been provided for each element of u, an,,; the- yalQ,.: a • 2
uapends upon the specific problem. It follows that

	

P	 q
V = e t

	

Qe + 2e tPf + 2 E	 E	 ^i^ p ig ^ij	
(4.7)

1-1 9=1

where, as in (2.7),

etPf = Y  f

U

E	 Yifi•
i=1

In this case

	

n	 p	 p
	f= E	 a. x, +-	 Z	 b	 r+ E	 b	 u., 1=1 ;	n.

i	 j = 1	 1> >	 j=1	
mij	 j=1	 Fij J

By extendir_5 the same argument whizh was used in Section II to show that all

but one component of f must be identically zero for single variable plants, it can
be seen, in the multivariable case and with P positive definite, that ri-p elements
of f must be identically zero. This is because there are only p elements of u,

ana therefure there can be only p ^on-zero tars. Y i f i , in (4.8) if u is to be
used successfully in nullifying e Pf in V.

The application of feedbacb synthesis to the multivariable system proceeds
along the same lines as for the single variable case, the difference being that

each of the p terms, Y, f., which are not identically zero must be nullified by a

different element of u. 1 Tht problems which are peculiar to the multivariable
system will noo* be di9cusstd.

First it is to be shown that the number of outputs must not be more than the
number of inputs, i.e. m < p. To this end, it is noted that, if the plant is to
follow the hodel with zero error, it is necessary that C = C m in (4.1), (4.2).

	

Otherwise w# z even though e = 0.	 Since it is assumed
p
 that 

in

 of the

plant are not known exactly, it cannot in general be assumed that C is known.

If, however, the state variables are derived as derivates of tae respective outputs,
then C and C become identity matrices. It follows that, for each output an,. its

sssocipated phrase variables, there will be one element of f which is not identically

zero. zut the number of coaponents of u must be nt least as great as the number of
elements of f which are not identically zero. In the sequel we shall assume that

(4.8)

(4.9)
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the number of inputs are equal to the number of outputs, i.e. m = p.

A problem which, unless it is recognized, may cause serious difficulty,
concerns the possible existence of more than one element of u ir. expressions for

f i . To introduce this problem, consider the case in which u is composed of two

tcras,, u 1 and u	 Then based on the foregoing discussion, there will be only two
elements of f which are not identically zero. We can therefore write

e t Pf = Y 
i 

f i + Yjfj	 (4.10)

where

fi = g i + bP11 U 1 + bpli u2'

f  = g  + bp21 u
l + 

bp22 u2'

Following the method outlinea in Section III, it is appropriate to express u and
U in terms of additive components which can be associated with various adaptive

gains. Let u  and u 2 be written as

u i = uil + u i2 , 1 = 1, 2.	 (4.11)

If it is assumed that 
u11 

and u22 contain the components which are designed to

nullify g  and g., then u 12 and u 21 can be used to nullify the terms b 12 u 2 and

b
p21 U  respectively. The scheme is diagrammatically represented in Figure 3,

for the simple case of two control variables. The method is valid provided that

the feeuback loop composed of k,,
4.1 k 12

does not cause irrst^^ city.

For the general case in which the components of the control variables are

P
u i = f u ij , j=1,	 n

and the associated adaptive ge.in terms are treated as constants, the stability is

governed by the roots of the characteristic equation

-1	
k12	 k13	

...	
k 1

k 21	 -1	 k73	 ...	
k 2

k31	 k32	
-1	 ...	

k 3

T	 0	 (4.12)

k k k -1
P1

p2 ,
P1

11
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1	 ul	 bpll

fi
kLl 	 bp1Z

!	 kl^

bp21

u`1!	 i	
f

U. 2	 bp2l

b^

ul/ - hit u2

u21 - k
:'1 u1

Interaction of Two l;ontrol Inputs

Figure 3
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There is of course in the real system some dynamics associated with each of the

gain terms kij . Since these gains will in general be time variable, the stability
analysis is greatly complicated. however, if thy: gains are slowly varying relative

to the small time constants associated with them, it is reasonable to use as a
stability criterion the requirement that the time varying roots of (4.12) have neg-
ative real parts.

It should be noted that the stability problem is avoided if the plant is
constructed so that the B

P 
matrix in (4.2) has the triangular form.

b11

b 21	 b22	 0	 (4.13)
P

b p I
	 bp2	 bpP

In this case all the feedback paths are broken since the determinant in (4.12)
has the same form as (4.13), i.e. kij = 0 if b.. = 0.

V USE OF PARTITIONED LIAPUI40V FUNCTION FOR NONINTERACTING MODEL

It has been shown in[ 31 that, in the case of multivariable systems,
simplification in the form of (2.6) can be made if the model is noninteracting.
;•lore specifically, if Am can be partitioned in the diagonal form

A=
m

A11	 0

'ii

0 A

PP

(5.1)

and Q = [ Q ii I is similarly partitioned, then P as a solution to (2.6) wilt have a

corresponaing partitionea diagonal form, so that

13
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P 11 0

P
P = ii (5.2)

(5.3)

(5.4)

U
P
pp

By this means, V in (4.6) can be expressed as

P
V = E	

Vi
1=1

where

qt	 2
Vi 

ei Fii ^ + 
	 ij Xijj=1

and Ei is a subvector o; e with dimension which is conformable with P ii . Then

q	 Oj^j
V i - - _tiQii ei + 2ti Pii'i + 2 ,j=1	 iaiji	 (5.5)

in which f. is a subvector of f with the same dimension as e,. Based on the

results of Section IV it is known chat each subvector, e i , mast be in phase vari-

able form. Therefore only one element of each f is not identically zero , as is

required for implementation of the control law.^Because of the diagonal partition-
ed form of P it follows that each P, is positive definite if P is positive
aefinite. Hence it is possible to achieve asymptotic stability by requiring
that each term V i , i=1 9 ...,p, be negative definite. This offers a considerable

sim-lification in the derivation of the control law.

VI DISTURBANCL REJUTION

As stated earlier, the method of feedback synthesis does not in itself provide
a means of controlling against disturbance inputs. This is because the method re-
quires that a measurement of the variable in question be available. It will be
observed, however, that this is not the case in input modification. As can be
seen from (2.12), the rcgaireaent on u is simply that it be greater than the

largest value assumed by the right-hand slue. Bence, if d is the term of interest,
as ;could be the case with phase-variable form, a component nof u, say 

un+2' 
must be

employed which satisfies the relationships

14



un+2l ' max 
I 

d

bpnI	
(6.1)

sgn bpn 
1n+2 ° - sgn Yn

Hence only bounds on d o must be know.

By aduiag the tern 
1n+2 

to the expression for u in (3.5), the control variable
becomes

n+2
U
	 j=1 u j	 (6.2)

where un+2 is the output of a relav which switches on the sign of 
In
. It follows

that the effect of d
n 

can be eliminated provideu that the output level of the relay

satisfies the relationship L > max I d
n	 pill.
/b 

The method has application to the multivariable problem only if it is possible
to satisfy certain inequalities between the relay outputs associated with the
various control variables as noted in [3]. A straightforward application of this
design modification can be made to the cas ,-, in which the B matrix of the plant
has the form of (4.13). Otherwise the presence of feedback paths with noalinear
(relay) elements presents a stability problem which is considered to be beyond
the scope of this paper.

VII CONCLUSIONS

In extending the application of Parks' adaptive control system design to
multivariable systems certain limitations were imposed. It is shown, for th=
practical case in which direct manipulation of plant parameters is not allowed,
that the sLatE variables must be related to the outputs as phase variables, and the
number of outputs must be no snore than the number of inputs. A critical problem
concerns the possibility of instability arising from the existence of feedback
loops arising from the adaptive gains operating on the control variables. A solu-
tion to this problem is found for a class of multivariable systems. however, more
work must be done to gain confidence in the ru:thod when applied to the broader class
of problems. Finally it is shown that by a modification of the design, it is poss-
ible in some casts to control against disturbances. In particular, the ideas con-
tained in this paper apply without exception to the single variable plant, this be-
ing a special case of the multivariable case.

Although no simulation studies are reported here, initial results indicate
that further work is required in order that a reasonable design can be achieved.

For example, although stability may be assured, it !e not always a simple matter
to select the adaptive gains and the P matrix so that reasonable convergence time
is assured. This is a problem for further study.
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